In Levels 9 and 10, the curriculum focus is on explaining phenomena involving science and its applications. Students consider both classic and contemporary science contexts to explain the operation of systems at a range of scales. At a microscopic scale, they consider the atom as a system of protons, electrons and neutrons, and understand how this system can change through nuclear decay. They...
In Levels 9 and 10, the curriculum focus is on explaining phenomena involving science and its applications. Students consider both classic and contemporary science contexts to explain the operation of systems at a range of scales. At a microscopic scale, they consider the atom as a system of protons, electrons and neutrons, and understand how this system can change through nuclear decay. They learn that matter can be rearranged through chemical change and that these changes play an important role in many systems. At a macroscopic scale, they explore ways in which the human body as a system responds to its external environment, and investigate the interdependencies between biotic and abiotic components of ecosystems. They develop a more sophisticated view of energy transfer by applying the concept of the conservation of matter in a variety of contexts. They apply their understanding of energy and forces to global systems including continental movement. Students explore the biological, chemical, geological and physical evidence for different theories, including the theories of natural selection and the Big Bang theory. Atomic theory is used to understand relationships within the periodic table of elements. Students understand that motion and forces are related by applying physical laws. Relationships between aspects of the living, physical and chemical world are applied to systems on a local and global scale enabling students to predict how changes will affect equilibrium within these systems.
By the end of Level 10, students analyse how models and theories have developed over time and discuss the factors that prompted their review. They predict how future applications of science and technology may affect people’s lives. They explain the concept of energy conservation and model energy transfer and transformation within systems. They analyse how biological systems function and respond to external changes with reference to the interdependencies between individual components, energy transfers and flows of matter. They evaluate the evidence for scientific theories that explain the origin of the Universe and the diversity of life on Earth. They explain the role of DNA and genes in cell division and genetic inheritance. They apply geological timescales to elaborate their explanations of both natural selection and evolution. They explain how similarities in the chemical behaviour of elements and their compounds and their atomic structures are represented in the way the periodic table has been constructed. They compare the properties of a range of elements representative of the major groups and periods in the periodic table. They use atomic symbols and balanced chemical equations...
By the end of Level 10, students analyse how models and theories have developed over time and discuss the factors that prompted their review. They predict how future applications of science and technology may affect people’s lives. They explain the concept of energy conservation and model energy transfer and transformation within systems. They analyse how biological systems function and respond to external changes with reference to the interdependencies between individual components, energy transfers and flows of matter. They evaluate the evidence for scientific theories that explain the origin of the Universe and the diversity of life on Earth. They explain the role of DNA and genes in cell division and genetic inheritance. They apply geological timescales to elaborate their explanations of both natural selection and evolution. They explain how similarities in the chemical behaviour of elements and their compounds and their atomic structures are represented in the way the periodic table has been constructed. They compare the properties of a range of elements representative of the major groups and periods in the periodic table. They use atomic symbols and balanced chemical equations to summarise chemical reactions, including neutralisation and combustion. They explain natural radioactivity in terms of atoms and energy change. They explain how different factors influence the rate of reactions. They explain global features and events in terms of geological processes and timescales, and describe and analyse interactions and cycles within and between Earth’s spheres. They give both qualitative and quantitative explanations of the relationships between distance, speed, acceleration, mass and force to predict and explain motion. They use the concepts of voltage and current to explain the operation of electric circuits and use a field model to explain interactions between magnets.
Students develop questions and hypotheses that can be investigated using a range of inquiry skills. They independently design and improve appropriate methods of investigation including the control and accurate measurement of variables and systematic collection of data. They explain how they have considered reliability, precision, safety, fairness and ethics in their methods and identify where digital technologies can be used to enhance the quality of data. They analyse trends in data, explain relationships between variables and identify sources of uncertainty. When selecting evidence and developing and justifying conclusions, they account for inconsistencies in results and identify alternative explanations for findings. Students evaluate the validity and reliability of claims made in secondary sources with reference to currently held scientific views, the quality of the methodology and the evidence cited. They construct evidence-based arguments and use appropriate scientific language, representations and balanced chemical equations when communicating their findings and ideas for specific purposes.