The VCAA is developing the Victorian Curriculum F–10 Version 2.0, starting with the publication of the Mathematics Version 2.0 curriculum in Term 3 2023.
Go to the VCAA website to find information about timelines for Mathematics Version 2.0 and the rest of the Victorian Curriculum F–10 Version 2.0, to register for professional learning webinars and to find more supporting resources.
The study of mathematics is central to the learning, development and prospects of all young Victorians. Mathematics provides students with essential mathematical knowledge, skills, procedures and processes in number, measurement, space, statistics and probability. Equally important are the essential roles that algebra, functions and relations, logic, mathematical structure and working mathematically play in people’s understanding of the natural and human worlds, and the interaction between them. The Mathematics curriculum provides the foundation for all students to develop the numeracy capabilities that they need in their personal, work and civic lives, as well as the fundamentals on which mathematical specialties and professional applications of mathematics are built.
Mathematics has its own value and aesthetic, and the Mathematics curriculum aims to build students’ appreciation of the power of mathematical reasoning as they develop mastery of the content in mathematics. It provides students with learning opportunities to develop mathematical proficiency, including a sound understanding of and fluency with the concepts, skills, procedures and processes needed to interpret contexts, choose ways to approach situations using mathematics, and reason and solve problems arising from these situations.
Mathematics is composed of multiple but interrelated and interdependent concepts and structures that students apply beyond the mathematics classroom, and the curriculum clarifies the links between the various aspects of mathematics as well as the relationship between mathematics and other disciplines. For example, in Science, understanding sources of error and their impact on the confidence of conclusions is vital; in Geography, interpretation of data underpins the study of human populations and their physical environments; in History, students need to be able to imagine timelines and time frames to reconcile related events; and in English, deriving quantitative, logical and spatial information is an important aspect of making meaning of texts.
Mathematical ideas have evolved across cultures over thousands of years and are continually developing. The modern world is influenced by ever-expanding computational power, digital systems, automation, artificial intelligence, economics and data-driven societies. This leads to the need for a capable science, technology, engineering and mathematics (STEM) workforce. Mathematics is integral to quantifying, thinking critically and making sense of the world. It is central to building students’ pattern recognition, visualisation, spatial reasoning and logical thinking. Interdisciplinary STEM learning can enhance students’ scientific and mathematical literacy, design and computational thinking, problem-solving and collaboration skills. Developing these competencies supports students in pursuing a variety of careers and occupations within STEM and other fields.
Mathematics provides opportunities for students to apply their mathematical knowledge creatively and efficiently, sharpen their sense of discovery and develop an appreciation of structure. It enables teachers to help students to become self-motivated, confident learners through practice, inquiry and active participation in relevant and challenging experiences.
Mathematics aims to ensure that students: